15分を目安に解答しましょう。ページ下部に解答のヒントもあります。
問題1: 平方根の加減
- 次の計算をして、最も簡単な形にしなさい。
- \(3\sqrt{2}+4\sqrt{2}\)
- \(5\sqrt{3}−2\sqrt{3}\)
- \(2\sqrt{8}+3\sqrt{2}\)
- \(\sqrt{50}−\sqrt{18}\)
問題2: 実数の範囲
- 次の不等式を満たす実数xの範囲を求めなさい。
- \(x^2<16\)
- \(x^2−4x>0\)
- \(x^2+3x+2≤0\)
問題3: 平方根の乗除
- 次の計算をして、最も簡単な形にしなさい。
- \(2\sqrt{18}×2\sqrt{2}\)
- \(\frac{\sqrt{48}}{\sqrt{3}}\)
- \(\frac{3\sqrt{27}}{\sqrt{3}}\)
問題4: 平方根を含む方程式
- 次の方程式を解きなさい。
- \(\sqrt{x}+1=3\)
- \(2\sqrt{x}−5=3\)
- \(\sqrt{4x+1}=5\)
問題5: 実数の四則演算(分数と根号を含む)
- 次の計算をしなさい。
- \(\frac{1}{2}+\frac{1}{3}\)
- \(\frac{3}{4}−\frac{2}{3}\)
- \(\frac{\sqrt{9}}{2}×3\)
- \(\frac{4}{\sqrt{16}}\)
解答のヒント
- 問題1: 同類項をまとめる。平方根の計算規則を利用する。
- 問題2: 二次不等式の解法を利用する。因数分解や平方完成などの手法が役立つ。
- 問題3: 平方根の乗法則と除法則を利用し、簡単な形にする。
- 問題4: 方程式の両辺を2乗して平方根を除去し、解を求める。
- 問題5: 分数の計算規則と平方根の性質を利用する。